초록 close

본 논문에서는 주문형 케이크의 자동화 제작을 위해 필요한 일련의 영상 기반 식품 모양 인식 및 정밀 측위 방법을 제안한다. 초소형 카메라 모듈을 푸드 아트 프린터 내부의 비스듬한 위치에 장착 후 원근 변환을 적용하여 탑 뷰(top veiw) 이미지로 전환 후 에지 검출, 직선 및 원형 허프 변환 등을 수행하도록 하여 식품의 모양을 인식하고 무게 중심 좌표를 검출하도록 하였다. 본 알고리즘을 케이크 및 떡 모형에 적용하여 테스트를 수행하였으며 그 결과 180 ~250 lux 범위의 조명 환경에서 98.75% 의 높은 객체 인식률을 얻을 수 있었으며 50~120 lux 범위에서 0.87% 이내의 중심점 측위 오차율을 얻을 수 있었다. 이는 수요처의 요구 사항을 충분히 만족하는 수치이며 실시간 처리 성능도 프레임당 0.5초 이내로 나타나 상용화 가능성을 충분히 갖춘 것으로 판단된다.


This paper proposes a vision-based food recognition method for automated production of custom cakes. A small camera module mounted on a food art printer recognizes objects’ shape and estimates their center points through image processing. Through the perspective transformation, the top-view image is obtained from the original image taken at an oblique position. The line and circular hough transformations are applied to recognize square and circular shapes respectively. In addition, the center of gravity of each figure are accurately detected in units of pixels. The test results show that the shape recognition rate is more than 98.75% under 180 ~ 250 lux of light and the positioning error rate is less than 0.87% under 50 ~ 120 lux. These values sufficiently meet the needs of the corresponding market. In addition, the processing delay is also less than 0.5 seconds per frame, so the proposed algorithm is suitable for commercial purpose.