초록 close

작물 모형의 품종에 따른 특성을 나타내는 품종 모수를 추정하기 위해서는 많은 양의 생육 관측 자료가 요구되며, 이를 확보하기 위해서는 많은 비용과 노력이 요구된다. 고품질 자료는 아니더라도 공개되어 있는 작물 생육 자료를 활용하여 모수 추정에 사용할 수 있으나, 이러한 자료의 품질에 대한 평가가 선행되어야 한다. 본 연구에서는 농업자료에 대한 정량적 평가 도구인 DatasetRanker를 사용하여 벼에 대한 지역적응시험 자료를 평가하였다. 또한, 결과를 바탕으로 자료의 품질을 개선하기 위한 관측체계의 개선방안을 제시하고자 하였다. 평가 결과 각각의 품종들은 모두 네 등급 중 세 번째로 높은 은 등급으로 평가되었으며, 더 상위의 등급을 얻지 못한 것은 대체로 생육 및 생육환경에 대한 관측자료의 부족에 기인하였다. 결과를 개선하기 위해서는 추가적인 관측자료가 요구되며, 일부 재배관리 등의 기본적인 조건들에 대한 정보를 추가하는 것만으로도 품질에 대한 평가 점수가 약 10% 정도 상승할 것으로 예상되었다. 또한, 정확한 위치정보가 공개될 경우 이를 기준으로 수집되는 토양 정보와 기상 정보의 불확실성을 감소시킬 수 있을 것이다. 생육기간 중 시계열적인 관측자료가 수집된다면 품질이 상당히 개선될 것으로 예상되었으며, 이를 위한 연구가 지속적으로 이루어져야 할 것이다.


Cultivar parameters, which are key inputs to a crop growth model, have been estimated using observation data in good quality. Observation data with high quality often require considerable labor and cost, which makes it challenging to gather a large quantity of data for calibration of cultivar parameters. Alternatively, data in sufficient quantity can be collected from the reports on the evaluation of cultivars by region although these data are of questionable quality. The objective of our study was to assess the quality of crop and management data available from the reports on the regional adaptation trials for rice cultivars. We also aimed to propose the measures for improvement of the data quality, which would aid reliable estimation of cultivar parameters. DatasetRanker, which is the tool designed for quantitative assessment of the data for parameter calibration, was used to evaluate the quality of the data available from the regional adaptation trials. It was found that these data for rice cultivars were classified into the Silver class, which could be used for validation or calibration of key cultivar parameters. However, those regional adaptation trial data would fall short of the quality for model improvement. Additional information on management, e.g., harvest and irrigation management, can increase the quantitative quality by 10% with the minimum effort and cost. The quality of the data can also be improved through measurements of initial conditions for crop growth simulations such as soil moisture and nutrients. In addition, crop model improvement can be facilitated using crop growth data in time series, which merits further studies on development of approaches for non-destructive methods to monitor the crop growth.