초록 close

단파 복사와 일조시간은 농작물 재배에 중요한 변수들이다. 그러나 국내에서 제공되는 일사 관측 자료는 수평 해상도가 높지 않아 농업 현장에 활용하기 어렵다. 본 연구에서는 지면대기모델링패키지(LAMP)를 이용하여 시간단위 일사 자료를 물리역학적으로 생산하고, 통계적 다운스케일링을 통해 고해상도 일단위 기상기후 DB를 구축하였다. 현재 이 DB는 품질 평가를 거쳐 농업가뭄 재해와 밭작물의 생육 현황을 진단하고 예측하는 ‘경기도 농업가뭄 예측시스템’의 공식 빅데이터 입력 자료로 활용되고 있다.


Shortwave radiation and sunshine hours (SHOUR) are important variables having many applications, including crop growth. However, observational data for these variables have low horizontal resolution, rendering its application to related research and decision making on f arming practices challenging. In the present study, hourly solar radiation data were physically generated using the Land-Atmosphere Modeling Package (LAMP) at the National Center for Agro-Meteorology, and then daily SHOUR fields were calculated through statistical downscaling. After data quality evaluation, including case studies, the SHOUR data were added to the existing publically accessible LAMP daily database. The LAMP daily dataset, newly updated with SHOUR, has been provided operationally as input data to the “Gyeonggi-do Agricultural Drought Prediction System,” which predicts agricultural weather disasters and field crop growth status.