초록 close

소나무재선충병은 우리나라 소나무림에 심각한 위협이 되고 있는 질병이다. 그러나 일반적으로 재선충병의 고사목 관측은 현장조사를 기반으로 하고 있기 때문에 물리적, 경제적 문제가 있어 대규모 삼림을 관측하는데 어려움이 있다. 본 연구에서는 소나무재선충병이 재발한 지역에 무인 항공기를 이용하여 고해상도 영상을 획득하였다. 이후 Artificial Neural Network(ANN), Support Vector Machine(SVM) 감독분류 기법을 통해 소나무재선충병 의심목을 탐지하였고. 감독분류 결과에 대한 정확도를 산출하였다. 또한 접근성이 높은 산림에 대해 감독분류를 실시한 후 현장 조사 결과간의 비교를 통해 정확도의 신뢰성을 검증하였다.


Bursaphelenchus xylophilus (Pine wilt disease) is a serious threat to the pine forest in Korea. However, dead wood observation by Pine wilt disease is based on field survey. Therefore, it is difficult to observe large-scale forests due to physical and economic problems. In this paper, high resolution images were obtained using the unmanned aerial vehicle (UAV) in the area where the pine wilt disease recurred. The damaged tree due to pine wilt disease was detected using Artificial Neural Network (ANN), Support Vector Machine (SVM) supervision classification technique. Also, the accuracy of supervised classification results was calculated. After conducting supervised classification on accessible forests, the reliability of the accuracy was verified by comparing the results of field surveys.