초록 close

최근 대용량의 스트림 데이터를 분산 처리하기 위한 연구들이 진행되고 있다. 본 논문에서는 빅데이터 환경에서 실시간 스트림 데이터의 점진적 처리 기법을 제안한다. 제안하는 기법은 처음 스트림 데이터가 입력되면 임시 큐에 데이터를 저장하고 마스터 노드에 저장되어 데이터와 비교과정을 통해 마스터 노드에 동일한 데이터가 있는 경우 마스터 노드에서 가지고 있는 노드의 정보를 이용하여 해당 노드의 메모리에서 기존 처리 결과를 재사용한다. 기존 처리 결과가 없다면 처리하고 처리 결과를 메모리에 저장한다. 분산 환경에서 점진적인 스트리밍 데이터 처리를 위해 노드의 작업 지연을 계산하여 노드의 부하를 파악하고 처리 시간 계산을 통해 각 노드의 성능을 고려한 잡 스케쥴링 기법을 제안한다. 제안하는 기법의 우수성을 보이기 위해 기존 기법과의 질의 수행 시간 비교를 위한 성능평가를 수행한다.


Recently, massive amounts of stream data have been studied for distributed processing. In this paper, we propose an incremental stream data processing method based on in-memory in big data environments. The proposed method stores input data in a temporary queue and compare them with data in a master node. If the data is in the master node, the proposed method reuses the previous processing results located in the node chosen by the master node. If there are no previous results of data in the node, the proposed method processes the data and stores the result in a separate node. We also propose a job scheduling technique considering the load and performance of a node. In order to show the superiority of the proposed method, we compare it with the existing method in terms of query processing time. Our experimental results show that our method outperforms the existing method in terms of query processing time.