초록 close

자동차 번호판 인식은 뺑소니차량의 추적이나 교통량의 측정, 교통사고의 조사 및 차량의 증가에 따른 차량범죄의 추적에 이용되고 있다. 실제 적용되는 교통 환경에서는 눈이나 비 그리고 주야간의 조명 변화에 따라서 입력되는 영상에 외란의 영향을 받기 쉬우며, 또한 영상을 촬영하는 순간의 차량의 직진방향과 카메라가 보는 방향에 따라서 동일한 번호판에 대해서도 기하학적으로 변형된 영상이 입력되게 된다. 본 연구에서는 이러한 카메라를 이용한 번호판 인식 환경의 문제를 해결하는 방법으로 호모그래피를 이용하여 기하학적으로 변형된 영상을 원래의 영상으로 변환하는 방법과 투영 히스토그램을 이용한 문자의 분리 방법을 제안하였다. 분리된 영상은 다중 퍼셉트론방법을 이용하여 문자와 숫자를 인식하였고 특히 최적한 입력, 은닉, 출력 층의 비율을 실험을 통하여 도출 하였다.


The Car License Plate Recognition (CLPR) is required in searching the hit-and-run car, measuring the traffic density, investigating the traffic accidents as well as in pursuing vehicle crimes according to the increased in number of vehicles. The captured images on the real environment of the CLPR is contaminated not only by snow and rain, illumination changes, but also by the geometrical distortion due to the pose changes between camera and car at the moment of image capturing. We propose homographic transformation and intensity histogram of vertical image projection so as to transform the distorted input to the original image and cluster the character and number, respectively. Especially, in this paper, the Multilayer Perceptron Algorithm (MLP) in car plate recognition is used to determine the optimized ratio between the number of input, hidden and output layers by the real experimental result while changing the node numbers of input and hidden as well as output layers.