초록 close

As the number of mobile devices such as smart phones and tablets explodes, the need for new services or applications is also rapidly increasing. Smart class application is one of the emerging applications, in which most of contents are distributed to all members of a class simultaneously. It is highly required to select relay nodes to cover shadow area of radio as well as extend coverage, but existing algorithms in a smart class environment suffer from high control packet overhead and delay for exchanging topology information among all pairs of nodes to select relay nodes. In addition, the relay selection procedure should be repeated in order to adapt to the dynamic topology changes caused by link status changes or device’s movement. This paper proposes the learning based relay selection algorithm to overcome aforementioned problems. The key idea is that every node keeps track of its relay quality in a fully distributed manner, where RQI (Relay Quality Indicator) is newly defined to measure both the ability of receiving packets from content source and the ability of successfully relaying them to successors. The RQI of each node is updated whenever it receives or relays broadcast packet, and the node having the higher RQI is selected as a relay node in a distributed and run-time manner. Thus, the proposed algorithm not only removes the overhead for obtaining prior knowledge to select relay nodes, but also provides the adaptability to the dynamic topology changes. The network simulation and experimental results prove that the proposed algorithm provides efficient and reliable content distribution to all members in a smart class as well adaptability against network dynamics.