초록 close

트위터와 같은 소셜 네트워크 분석은 인간의 행동을 이해하거나, 화제가 되는 주제를 탐지하거나, 영향력 있는 사람을 식별하거나, 커뮤니티나 그룹을 발견하는데 흥미로운 시각을 제공할 수 있다. 하지만 소셜 네트워크가 가지는 특성(즉 데이터가 방대하고, 정교하지 않으며 또한 동적인 특성) 으로 인하여 소셜 네트워크에서 주제와 연관이 있는 데이터를 수집하는 것은 어려운 일이다. 본 논문은 주어진 주제와 관련 있는 트윗을 효과적으로 수집하기 위하여 시드 노드를 동적으로 선택하는 알고리즘을 제안한다. 본 알고리즘은 사용자의 영향력을 측정하기 위하여 사용자 속성을 활용하며, 수집 프로세스 중에 시드 노드를 동적으로 할당한다. 우리는 제안한 알고리즘을 실제 트윗 데이터에 적용하였으며, 만족할 만한 성능 결과를 얻었다.


Analysis of social media such as Twitter can yield interesting perspectives to understanding human behavior, detecting hot issues, identifying influential people, or discovering a group and community. However, it is difficult to gather the data relevant to specific topics due to the main characteristics of social media data; data is large, noisy, and dynamic. This paper proposes a new algorithm that dynamically selects the seed nodes to efficiently collect tweets relevant to topics. The algorithm utilizes attributes of users to evaluate the user influence, and dynamically selects the seed nodes during the collection process. We evaluate the proposed algorithm with real tweet data, and get satisfactory performance results.