초록 close

본 논문에서는 RST(Rough Set Theory)과 SVM(Support Vector Machine) 알고리즘을 이용한 RSIDS (RST and SVM based Intrusion Detection System)를 설계하였다. RSIDS는 PrePro(Preprocessing) 모듈, RRG(RST based Rule Generation) 모듈, 그리고 SAD(SVM based Attack Detection) 모듈로 구성된다. PrePro 모듈은 수집한 정보를 RSIDS의 데이터 형식에 맞게 변경한다. RRG 모듈은 공격 자료를 분석하여 공격 규칙을 생성하고, 그 규칙을 이용하여 대량화된 데이터에서 공격정보를 추출하고, 그리고 추출한 공격정보를SAD 모듈에 전달한다. SAD 모듈은 추출된 공격 정보를 이용하여 공격을 탐지하여 관리자에게 통보한다. 그 결과,기존의 SVM과 비교해볼 때, RSIDS는 평균 공격 탐지율 77.71%에서 85.28%로 향상되었으며, 평균 FPR은13.25%에서 9.87%로 감소하였다. 따라서 RSIDS는 기존의 SVM을 이용한 공격 탐지 기법보다 향상되었다고 할수 있다.


This paper proposes a design of RSIDS(RST and SVM based Intrusion Detection System) using RST(Rough Set Theory) and SVM(Support Vector Machine) algorithm. The RSIDS consists of PrePro(PreProcessing) module, RRG(RST based Rule Generation) module, and SAD(SVM based Attack Detection) module. The PrePro module changes the collected information to the data format of RSIDS. The RRG module analyzes attack data, generates the rules of attacks, extracts attack information from the massive data by using these rules, and transfers the extracted attack information to the SAD module. The SAD module detects the attacks by using it, which the SAD module notifies to a manager. Therefore, compared to the existing SVM, the RSIDS improved average ADR(Attack Detection Ratio) from 77.71% to 85.28%, and reduced average FPR(False Positive ratio) from 13.25% to 9.87%. Thus, the RSIDS is estimated to have been improved,compared to the existing SVM.