초록 close

최근 대형 매스콘크리트 구조물의 온도균열 저감을 위해 저열 포틀랜드시멘트(LPC), 삼성분계 저발열시멘트(TBC) 및 조강형저발열시멘트(EBC)에 대한 다양한 연구와 현장적용이 이루어지고 있다. 콘크리트 구조물의 온도균열 검토를 위해서는 단열온도 예측모델이 필수적이지만, 아직 많은 종류의 배합에 대한 자료가 축적되어 있지 않으며, 단열온도 상승 시험체의 용적에 따른 결과 차이가 보고되고 있다. 따라서 이 연구에서는 결합재 종류 및 단열 시험체 용적에 따른 단열온도 상승시험을 수행하고 배합별 최대 단열온도 상승양과 반응계수를 분석 제시하였다. 실험 결과, TBC 배합의 최대 단열온도 상승양(Q∞) 및 반응계수(r)가 가장 작은 것으로 나타났다. 또한 단열 시험체 용적에 따라 Q∞과 r가 다르게 나타났으며, 50 l 시험체에 의한 측정 결과가 6 l보다 일정하게 높은 상관관계를 나타냈다. 이상의 상관관계를 이용하면, 6 l 시험체에 의한 결과로 50 l 시험체의 단열온도 상승양을 예측할 수 있어 현장 콘크리트 품질관리 및 기초연구단계에서 활용할 수 있을 것으로 판단된다.


To secure the thermal crack resistance of mass concrete, researches and the field applications of low heat portland cement (LPC), ternary blended cement (TBC) which is produced by blending ordinary portland cement with blast furnace slag and fly ash, and early strength low heat blended cement (EBC) increased in recent years. Although the model for adiabatic temperature rise is necessary for estimating the risk of thermal cracking of concrete structures, sufficient data have not been accumulated for these mixtures. In addition, the differences in adiabatic test results have been reported for the volume of test specimens. Therefore, the present study evaluated the characteristics of adiabatic temperature rise based on the type of binder and the volume of the adiabatic test specimen. Test results indicated that the maximum temperature rise (Q∞) and the reaction factor (r) of TBC were the lowest. Test results also showed that Q∞ and r changed with respect to the volume of test specimen. Q∞ and r obtained from 6l equipment were lower than those of 50l equipment. Therefore, corrections with respect to this phenomenon was confirmed and the corrections factors are presented.