초록 close

항공라이다 데이터를 이용한 건물 추출 연구가 많이 진행되어 오고 있으나 대부분의 연구는 건물경계를 직선으로 가정하기 때문에 곡선경계가 포함된 건물의 경계를 올바르게 모델링하지 못하는 한계가 있다. 본 논문은 곡선경계를 포함하는 건물을 항공라이다 데이터로부터 직선과 곡선이 혼합된 경계로 모델링하는 것을 목적으로 한다. 건물점들에 대하여 적응적 컨벡스헐 알고리즘과 큰 반경의 국지적 컨벡스헐 알고리즘을 적용하여 두 세트의 경계점을 추출한다. 경계점들의 평균 점 간격 및 수직이등분선의 교차 비율에 의하여 곡선 세그먼트를 판별한 후, 직선과 곡선 세그먼트에 대하여 각각 다른 정규화 방법을 적용하여 건물경계를 모델링한다. 실험결과, 곡선 세그먼트의 추출 완전성과 정확성이 각각 69%, 100%로서 본 연구의 방법을 통해 대부분의 곡선경계를 올바르게 추출 및 모델링할 수 있었다. 본 연구의 결과는 수치지도 제작기준을 만족하는 건물경계를 자동으로 생성하는데 효과적으로 활용될 수 있을 것이다.


Although many studies have been conducted to extract buildings from airborne lidar data, most of them assume that all the boundaries of a building are straight line segments. This makes it difficult to model building boundaries containing curved segments correctly.  This paper aims to model buildings containing curved segments as combination of straight lines and arcs. First, two sets of boundary points are extracted by adaptive convex hull algorithm and local convex hull algorithm with a larger radius. Then, arc segments are determined by average spacing of boundary points and intersection ratio of perpendicular lines. Finally, building boundary is modeled through regularization of least squares line or circle fitting. The experimental results showed that the proposed method can model the curved building boundaries as arc segments correctly by completeness of 69% and correctness of 100%. The approach will be utilized effectively to create automatically digital map that meets the conditions of the Korean digital mapping.