초록 close

최근 지능형 교통 시스템을 다양한 상황 및 환경에 적용하려는 시도가 증가함에 따라, 다수의 지능형 교통 시스템에서 사용되고 있는 차량 번호판 인식 과정이 입력영상 내 차량의 위치 및 촬영 각도와 관계없이 정확하게 이루어질 필요성이 있다. 본 논문에서는 현행 번호판의 규격정보를 활용하여 오검출된 번호판 후보 영역의 제거 및 번호판 내 글자추출을 수행하고, 한글 특성을 고려한 글자인식을 수행하는 차량 번호판 인식 시스템을 제안한다. 제안하는 시스템은 입력영상에서 검출한 번호판 후보 영역들에 대해서 기울기 보정을 수행한 후, 후보 영역 내 글자로 판명되는 객체의 위치 및 형태 정보를 번호판 규격정보와 비교 검증하는 과정을 거쳐 오검출된 번호판 영역을 제거한다. 또한 글자추출 단계에서는 영역 내 밝기 변화를 고려한 이진화를 수행한 뒤, 번호판 규격정보 및 번호판 영역의 종횡비, 배경색, 투영정보 등을 종합적으로 활용하여 번호판 영역 내 글자를 정확하게 추출한다. 그리고 번호판 영역 내 글자들 중 오인식률이 높은 한글의 인식에 있어서, 형태적 유사성으로 그룹을 나눈 뒤, 주요 특징점들을 토대로 계층을 좁혀 나가는 super-class 개념을 적용하여 한글 인식을 수행한다. 성능 검증을 위해 다양한 배경에서 촬영된 영상에 대해서 실험을 수행한 결과 제안하는 번호판 인식 시스템이 영상 내 차량의 위치 및 촬영 각도의 변화에 강인한 것을 확인할 수 있었다.


Recently, various attempts have been made to apply Intelligent Transportation System under various environments and conditions. Consequently, an accurate license plate recognition regardless of vehicle location and viewing angle is required. In this paper, we propose a novel license plate recognition system which exploits a) the format of license plates to remove false candidates of license plates and to extract characters in license plates and b) the characteristics of Hangul for accurate character recognition. In order to eliminate false candidates of license plates, the proposed method first aligns the candidates of license plates horizontally, and compares the position and the shape of objects in each candidate with the prior information of license plates provided by Korean Ministry of Construction & Transportation. The prior information such as aspect ratio, background color, projection image is also used to extract characters in license plates accurately applying an improved local binarization considering luminance variation of license plates. In case of recognizing Hangul in license plates, they are initially grouped according to their shape similarity. Then a super-class method, a hierarchical analysis based on key feature points is applied to recognize Hangul accurately. The proposed method was verified with high recognition rate regardless of background image, which eventually proves that the proposed LPR system has high performance regardless of the vehicle location or viewing angle.