초록 close

본 논문에서는 유도전동기 고장 검출 및 분류를 위한 3-단계 (고장 신호의 전 처리, 고장 신호의 특징 추출, 고장 신호의 고장 유형별 분류) 알고리즘을 제안한다. 먼저 전 처리 단계에서는 저역 통과 필터를 통해 취득한 신호의 고주파 대역에 영향을 미칠 수 있는 잡음 성분을 제거하며, 다음으로는 이산 코사인 변환(discrete cosine transform)과 통계적 방법을 이용하여 고장 유형별 신호의 특징을 추출하고, 마지막 단계에서는 추출된 특징을 입력으로 하는 역 전파 신경 회로망(back propagation neural network)를 이용하여 신호를 고장 유형별로 분류한다. 시스템의 성능을 평가하기 위해 모의실험에 사용된 신호는 유도전동기의 진동 신호로, 정상 및 각종 이상 상태에 대해 8kHz의 샘플링율을 갖는 1초 길이의 데이터를 사용하였다. 모의실험 결과, 제안한 알고리즘은 학습된 상황의 고장 분류에서는 100%의 정확도를 보였으며, 기존의 공분산을 이용한 고장 검출 및 분류 알고리즘과 비교하여 약 50%의 정확도 향상을 보였다. 또한 고장 신호 취득 시 사용하는 센서의 종류나 주변 환경으로 인해 잡음이 추가될 수 있는 상황을 고려하여 취득한 데이터에 백색 가우시안 잡음을 인위적으로 추가한 모의실험에서도 98%이상의 고장 분류 정확도를 보였다. 더불어, 본 논문에서는 TI사의 TMS320F2812 디지털 신호 처리기에 제안한 고장 검출 및 분류 알고리즘을 탑재하여 실제 산업현장에서의 사용여부를 검증하였다.


This paper proposes a 3-stage (preprocessing, feature extraction, and classification) fault detection and classification algorithm for induction motors. In the first stage, a low-pass filter is used to remove noise components in the fault signal. In the second stage, a discrete cosine transform (DCT) and a statistical method are used to extract features of the fault signal. Finally, a back propagation neural network (BPNN) method is applied to classify the fault signal. To evaluate the performance of the proposed algorithm, we used one second long normal/abnormal vibration signals of an induction motor sampled at 8kHz. Experimental results showed that the proposed algorithm achieves about 100% accuracy in fault classification, and it provides 50% improved accuracy when compared to the existing fault detection algorithm using a cross-covariance method. In a real-world data acquisition environment, unnecessary noise components are usually included to the real signal. Thus, we conducted an additional simulation to evaluate how well the proposed algorithm classifies the fault signals in a circumstance where a white Gaussian noise is inserted into the fault signals. The simulation results showed that the proposed algorithm achieves over 98% accuracy in fault classification. Moreover, we developed a testbed system including a TI's DSP (digital signal processor) to implement and verify the functionality of the proposed algorithm.