초록 close

계수(Count) 데이터는 반응변수가 음이 아닌 계수로, 자동차 사고건수나 지진이 일어난 횟수, 보험처리 발생건수 등을 말한다. 이런 경우에는 주로 포아송 회귀모형을 사용하지만, 평균과 분산이 동일한 경우만 이용될 수 있다는 제약이 따른다. 실증적 자료에서는 그룹 간 이질성으로 인해 분산이 매우 큰 과대산포(Overdispersion) 현상을 볼 수 있는데, 이를 무시할 경우 회귀계수나 표준오차가 편의되는 현상이 발생한다. 보험은 보장성 개념이 강하기 때문에 실제로 보험처리가 발생하지 않는 경우가 많아, 보험처리 건수에 `0'값이 있을 수 있다. 본 논문에서는 `0'값이 많은 자료의 분석을 위해 제로팽창 모형(Zero-Inflated Model)을 고려하고, 여러 모형들의 효율성을 실증자료를 통하여 비교하였다. 실증 자료 분석 결과, 과대산포와 제로팽창 현상이 존재하는 자료에서 제로팽창 음이항 모형(Zero-Inflated Negative Binomial Regression Model)이 가장 효율적인 모형임을 보여 주었다.


When the observations can take only the non-negative integer values, it is called the count data such as the numbers of car accidents, earthquakes, or insurance coverage. In general, the Poisson regression model has been used to model these count data; however, this model has a weakness in that it is restricted by the equality of the mean and the variance. On the other hand, the count data often tend to be too dispersed to allow the use of the Poisson model in practice because the variance of data is significantly larger than its mean due to heterogeneity within groups. When overdispersion is not taken into account, it is expected that the resulting parameter estimates or standard errors will be inefficient. Since coverage is the main issue for insurance, some accidents may not be covered by insurance, and the number covered by insurance may be zero. This paper considers the zero-inflated model for the count data including many zeros. The performance of this model has been investigated by using of real data with overdispersion and many zeros. The results indicate that the Zero-Inflated Negative Binomial Regression Model performs the best for model evaluation.