초록 close

본 논문에서는 분류자들 속에 중요도 정보를 삽입하여 동적 중요도 결정이 가능한 앙상블 시스템을 제안하였다. 그동안 앙상블 시스템에서 중요도는 훈련이 끝나고 결정된 중요도를 사용하였다. 한 번 결정된 중요도는 테스트 데이터에 상관없이 정적으로 사용되었다. 이 문제를 푸는 방법으로 관문 네트워크에서 구조적으로 계층을 두는 프로세스를 추가하여 동적 중요도 결정이 가능하게 하는 방법이 있지만 프로세스가 추가된다는 단점이 있다. 본 논문에서는 이런 추가적인 프로세스 없이 간단하게 동적 중요도 결정이 가능한 방법을 보여주고 구조적 변경 없이 기존의 시스템에 쉽게 적용할 수 있으며 AdaBoost보다 나은 성능을 보여주는 알고리즘을 제안한다.


In this paper, a new ensemble system using dynamic weighting method with added weight information into classifiers is proposed. The weights used in the traditional ensemble system are those after the training phase. Once extracted, the weights in the traditional ensemble system remain fixed regardless of the test data set. One way to circumvent this problem in the gating networks is to update the weights dynamically by adding processes making architectural hierarchies, but it has the drawback of added processes. A simple method to update weights dynamically, without added processes, is proposed, which can be applied to the already established ensemble system without much of the architectural modification. Experiment shows that this method performs better than AdaBoost.