초록 close

영상처리는 정확한 오이의 형상 및 위치를 인식하기위하여 형상인식 알고리즘에 대한 연구를 수행하였다. 다양한 오이형상을 인식하기 위한 방법으로는 신경회로망의 연상 메모리 알고리즘을 이용하여 오이의 특징형상을 인식하였다. 형상인식은 실제영상에서 오이의형상과 위치를 판정할 수 있도록 알고리즘을 개발한결과, 다음과 같은 결론을 얻었다. 본 알고리즘에서는일정한 학습패턴의 수를 2개, 3개, 4개를 각각 기억시켜 샘플패턴 20개를 실험하여 연상시킨 결과, 학습패턴으로 복원된 출력패턴의 비율은 각각 65.0%,45.0%, 12.5%로 나타났다. 이는 학습패턴의 수가 많을수록 수렴할 때, 다른 출력패턴으로 많이 검출되었다. 오이의 특징형상 검출은 30×30간격으로 자동검출 되도록 처리하였다. 실제영상에서 자동 검출로 처리한 결과,오이인식의 처리시간은 약 0.5~1초/1개(패턴) 빠르게검출되었다. 또한, 다섯 개의 실제 영상에서 실험한 결과, 학습패턴에 대한 다른 출력패턴은 96~99%의 제거율을 나타내었다. 오이로 인식된 출력패턴 중에서, 오검출된 출력패턴의 비율은 0.1~4.2%를 나타내었다. 본 연구에서는 신경회로망을 이용하여 오이의 형상 및 위치를 인식할 수 있도록 알고리즘을 개발하였다. 오이의 위치측정은 실제영상에서 학습패턴과 유사한 출력패턴의좌표를 가지고, 오이의 위치좌표를 추정할 수 있었다.


Pattern recognition of a cucumber were conducted to detect directly the binary images by using thresholding method, which have the threshold level at the optimum intensity value. By restricting conditions of learning pattern, output patterns could be extracted from the same and similar input patterns by the algorithm. The algorithm of pattern recognition was developed to determine the position of the cucumber from a real image within working condition. The algorithm, designed and developed for this project, learned two, three or four learning pattern, and each learning pattern applied it to twenty sample patterns. The restored success rate of output pattern to sample pattern form two, three or four learning pattern was 65.0%,45.0%, 12.5% respectively. The more number of learning pattern had, the more number of different out pattern detected when it was conversed. Detection of feature pattern of cucumber was processed by using auto scanning with real image of 30 by 30 pixel. The computing times required to execute the processing time of cucumber recognition took 0.5 to 1 second. Also, five real images tested, false pattern to the learning pattern is found that it has an elimination rate which is range from 96 to 98%. Some output patterns was recognized as a cucumber by the algorithm with the conditions. the rate of false recognition was range from 0.1to 4.2%.