초록 close

로봇이 동작하는 환경을 완벽하게 커버리지 하기 위해서는 전체 환경 지도를 가지고 있어야 한다. 그러나 대부분의 기존 커버리지 알고리즘은 로봇이 동작하기 전 사전에 생성된 지도가 있어야 동작 한다. 이런 이유로 기존의 커버리지 알고리즘은 미지의 환경에 바로 적용할 수 없는 문제를 가지고 있다. 미지의 환경에서 로봇이 모든 영역을 커버리지 하기 위해서는 로봇 스스로 환경 지도를 생성할 수 있어야 한다. 본 논문에서는 SLAM 알고리즘을 통합하여 미지의 환경에서 로봇이 환경 지도를 생성하며 생성된 지도를 기반으로 커버리지를 수행하는 DmaxCoverage 알고리즘을 제안한다. 시뮬레이션 실험을 통해서 DmaxCoverage 알고리즘이 기존의 커버리지 알고리즘에 비해서 효율적임을 증명하였다.


An autonomous robot must have a global workspace map in order to cover the complete workspace. However, most previous coverage algorithms assume that they have a grid workspace map that is to be covered before running the task. For this reason, most coverage algorithms can not be applied to complete coverage tasks in unknown environments. An autonomous robot has to build a workspace map by itself for complete coverage in unknown environments. Thus, we propose a new DmaxCoverage algorithm that allows a robot to carry out a complete coverage task in unknown environments. This algorithm integrates a SLAM algorithm for simultaneous workspace map building. Experimentally, we verify that DmaxCoverage algorithm is more efficient than previous algorithms.