초록 close

차량 운전자 지원을 위한 연구에서 도로상에 위치한 교통 표지판은 운전자에게 아주 중요한 정보임에 틀림없다. 따라서 주행중인 차량에서 획득한 영상으로부터 실시간으로 교통 표지판을 검출하여 운전자에게 그 정보를 제공한다면 안전운전에 큰 도움이 될 것이다. 하지만 주행중인 차량으로부터 획득한 영상에는 차량과 노면의 진동에 의해 획득된 영상에 흐림 현상이 발생하고 또한 노이즈들이 포함되어 있어 정확한 표지판 검출이 어려운 문제점이 있다. 게다가 영상획득을 위한 촬영 각도나 날씨 등에 의해 교통 표지판의 고유한 색상과 모양이 서로 다르게 표현되는 문제점이 발생한다. 이를 해결하기 위해 본 논문에서는 도로 환경과 같은 다양한 조도 변화가 포함된 교통 표지판 영상들로부터 고유색상 정보를 분석하고 HSI 고유칼라 모델을 생성하고 이를 이용하여 교통 표지판의 후보 영역을 검출한다. 그리고 모양정보 분석을 위해 교통 표지판의 고유한 형태학적 정보를 표현할 수 있는 불변 모멘트 특징정보를 추출하여 SVM을 통해 최종 교통 표지판 영역을 검출하는 방법을 제안한다. 제안한 방법을 도로에서 획득한 영상에서 실험한 결과, 교통 표지판 검출율은 91%, 그리고 프레임당 처리 시간은 0.38초이며, 제안한 방법은 실시간 지능형 교통 안내 시스템에 유용하게 적용될 수 있다.


In the research for driver assistance systems, traffic sign information to the driver must be a very important information. Therefore, the detection system of traffic signs located on the road should be able to handel real-time. To detect the traffic signs, color and shape of traffic signs is to use the information after images obtained using the CCD camera. In the road environment, however, using color information to detect traffic sings will cause many problems due to changes of weather and environmental factors. In this paper, to solve it, the candidate traffic sign regions are detected from road images obtained in a variety of the illumination changes using the HSI eign-color model. And then, using the invariant moment-based SVM classifier to detect traffic signs are proposed. Experimental results show that, traffic sign detection rate is 91%, and the processing time per frame is 0.38sec. Proposed method is useful for real-time intelligent traffic guidance systems can be applied.