초록 close

이 논문은 잡음환경에서 음성인식률 향상을 위한 끝점 검출 방법에 대해 소개한다. 제안된 방법은 엔트로피와 음성의 하모닉 검출을 이용해 음성 구간과 비음성 구간을 검출한다. 음성의 스펙트럴 에너지에 대한 엔트로피를 사용하여 끝점검출을 하게 되면 비교적 높은 SNR 환경(SNR 15dB)에서는 성능이 우수하나 잡음환경의 변화에 따라 음성과 비음성의 문턱값이 변화하여 낮은 SNR환경(SNR 0dB)에서는 정확한 끝점 검출이 어렵다. 본 논문은 낮은 SNR 환경(0dB)에서도 정확한 끝점을 검출할 수 있도록 음성의 스펙트럴 엔트로피와 하모닉 성분을 검출하여 끝점을 검출하는 방법을 제안한다. 실험결과 기존의 엔트로피만을 이용한 방법보다 개선된 성능을 보였다.


This paper explains end-point detection method for better speech recognition rates. The proposed method determines speech and non-speech region with the entropy and the harmonic detection of speech. The end-point detection using entropy on the speech spectral energy has good performance at the high SNR(SNR 15dB) environments. At the low SNR environment(SNR 0dB), however, the threshold level of speech and noise varies, so the precise end-point detection is difficult. Therefore, this paper introduces the end-point detection methods which uses speech spectral entropy and harmonics. Experiment shows better performance than the conventional entropy methods.