초록 close

얼굴의 윤곽선을 검출하기 위해서는 일반적으로 입력 영상에 직접 동적 윤곽선 모델(Active Contour Model)을 적용하는 방법을 많이 사용한다. 그러나 동적 윤곽선 모델은 초기의 위치 설정과 사용되는 에너지 함수의 계수 값에 따라 성능에 영향을 받기 때문에, 다양한 조명조건과 환경조건에 따라 최적화된 파라미터들을 설정해야 하는 번거로움이 있다. 또한 섬세한 윤곽선의 검출을 위해서는 모델에서 사용되는 정점의 수를 증가시켜야 하는 단점이 있다. 이러한 단점들을 해결하기 위해, 본 논문에서는 입력영상의 분할된 영역에서의 히스토그램 분석을 통하여, 얼굴 영역과 배경 영역의 픽셀 값을 구분할 수 있는 임계값을 자동으로 찾아, 얼굴의 윤곽선 영역을 검출하는 접근 방법을 제안한다. 제안된 방법은 입력 영상의 분석을 통하여 얼굴의 윤곽선 영역을 검출하기 때문에 다양한 조명과 배경 조건하에서도 높은 성능으로 얼굴의 윤곽선 영역을 검출하였다.


Some methods employing the Active Contour Model have been widely used to extract face contour. Their performance, however, depends on the initial position of the model and the coefficients of the energy function which should be reconsidered whenever illumination and environmental condition of an input image is changed. Additionally, the number of points in the contour model should increase drastically in order to extract a fine contour. In this paper, we thus propose a novel approach which extracts face contour by segmenting the face region with threshold values obtained by a histogram analysis technique in the separated region of input image. The proposed method shows good performance under various illumination and environmental condition since it extracts face contour by considering the characteristics of the input image.