초록 close

최근에는 확률강우량을 산정할 경우 지점빈도해석의 단점을 보완한 지역빈도해석법이 자주 실무에 적용되고 있으나, 가뭄에 관련한 연구에서는 대부분 아직까지 지점자료를 이용한 가뭄분석을 실시하고 있다. 본 연구에서는 가뭄의 지역적 특성 분석을 실시하기 위하여 필요한 동질한 가뭄특성을 지닌 지역을 구분하는 연구를 수행하였다. 본 연구에서는 기상청 강우관측 지점자료 중 30년 이상의 강우자료를 보유한 58개의 관측지점을 대상으로 표준강수지수(SPI)를 산정하여 가뭄의 심도, 지속기간, 강도, 발생빈도 등과 같은 가뭄특성인자를 생성하였다. 가뭄특성인자는 수문학적으로 동질한 특성을 지닌 지역을 구분하는데 중요한 정보를 제공한다. 본 연구에서는 다양한 가뭄특성인자를 효율적으로 활용하여 K-means 기법을 적용한 군집분석을 실시하여 동질한 가뭄특성을 지닌 지역을 6개 지역으로 구분하였다. 이러한 지역구분은 가뭄 특성의 공간적 해석을 가능하게 할 수 있고, 지점빈도 해석의 단점을 보완하는 지역빈도 해석도 가능하게 할 수 있다.


Regional frequency analysis is often used to overcome the limitation of point frequency analysis to estimate probability rainfall depths. However, point frequency analysis is still used in drought analyses. This study proposed a practical method to categorize the homogeneous regions of drought characteristics for the analyses of regional characteristics of droughts in Korea. Using rainfall data from 58 observation stations managed by the Korea Meteorological Administration, this study calculated drought attributes, i.e., mean drought indices for various durations using the Standardized Precipitation Index (SPI) and drought severities expressed by durations, depth, and intensity. The drought attributes provided useful information for categorizing stations into the hydrological homogeneous regions. This study introduced a cluster analysis with K-means techniques to group observation stations. The cluster analysis grouped observation stations into 6 regions in Korea. The data in the hydrological homogeneous region would be used in spatial analysis of drought characteristics and drought regional frequency analysis.