초록 close

본 논문에서는 호기와 흡기에 촬영된 흉부 CT 영상간 폐 영상정합을 위해 데몬 알고리즘을 이용한 비강체 정합 방법을 제안한다. 먼저 두 영상에 어파인 변환을 적용하여 폐를 전역적으로 정렬한 후, 데몬 알고리즘에 기반한 비강체 정합 방법을 적용하여 지역적으로 변형시킨다. 데몬 힘의 계산을 위해 기준영상의 기울기 정보 뿐 아니라 부유영상의 기울기 정보를 함께 사용하여 기준영상의 기울기가 약한 부분에서 빠른 수렴을 돕는다. 활성-셀 기반 데몬 알고리즘은 두 영상 간 정합도가 높은 셀에서의 불필요한 변위 계산을 방지함으로써 정합 과정을 가속화시키고 변형 접힘 현상의 확률을 줄여주는 역할을 한다. 제안방법의 성능을 평가하기 위해 기준 기울기 힘을 사용한 방법과 부유 기울기 힘을 함께 사용한 방법을 비교하고, 활성-셀을 사용한 방법과 사용하지 않은 방법을 비교하였다. 실험 결과는 제안 방법이 변형이 큰 폐를 정확하게 정합하며 수행시간을 감소시킴을 보여준다.


This paper proposes a deformable registration method using a demon algorithm for aligning the lungs between end-exhale and end-inhale CT scans. The lungs are globally aligned by affine transformation and locally deformed by a demon algorithm. The use of floating gradient force allows a fast convergence in the lung regions with a weak gradient of the reference image. The active-cell-based demon algorithm helps to accelerate the registration process and reduce the probability of deformation folding because it avoids unnecessary computation of the displacement for well-matched lung regions. The performance of the proposed method was evaluated through comparisons of methods that use a reference gradient force or a combined gradient force as well as methods with and without active cells. The results show that the proposed method can accurately register lungs with large deformations and can reduce the processing time considerably.