초록 close

Nanoimprint lithography (NIL) is one of the most promising technologies for nanofabrication because it can create nano- and microscale structures and devices in a cost-effective manner. In the NIL process, a mold with patterns on its surface comes in contact with a polymer film on a substrate. The patterns are transferred to the polymer film and then the mold is separated from the film. Mechanical contact between the mold and the polymer film, and between the film and the substrate, is inevitable. In some cases, during the separation process, adhesion and friction forces at the interfaces can deform and fracture the transferred patterns and detach the polymer film from the substrate. Thus, controlling the adhesion and friction between the materials in contact is very important in achieving a successful pattern transfer and making the NIL process a robust nanofabrication technique. Many theoretical and experimental research efforts have been made to clarify the tribological phenomena in NIL and to reduce defects due to adhesion and friction. This article describes the tribological problems encountered and reviews the related research.