초록 close

The purpose of the study was to evaluate spatial and temporal effects of wastewater treatment plants (WWTPs) on the water quality of downstreams (Tan Stream, TS; Daemyeong Stream, DS; Gwangju Stream, GS, and Kap Stream, KS) located in four major watersheds along with impact analysis of nutrient enrichments on the WWTPs during 2004~2008. In the four streams, seasonal means of BOD, COD, TN, and TP were significantly (p⁄0.01) greater in the downstreams (Ds) than the upstreams (Us). The removal effect of nutrients (nitrogen, and phosphorus) from the WWTPs was much less than the BOD, indicating a greater nutrient impact on the downstreams. Seasonal dilution of organic matter, based on BOD, during the summer monsoon of July~ September was most pronounced in the downstreams of all four watersheds. However, mean TN in the downstreams during the monsoon varied little in all four streams. Regression analysis of TN in the downstreams against TN from the WWTPs showed that in the TS, and DS regression slopes in the upstreams were similar to the slopes of downstream but there was a significant difference in the GS (p⁄0.001) and KS (p⁄ 0.01). Tan-Stream WWTP showed low removal efficiency of BOD and COD concentrations, compared to the nutrients, whereas, two WWTPs of Gwangju and Kap Stream had low removal effects in TN and TP. Regression analysis of TN and BOD in the downstreams showed that they was closely related (p⁄0.01) with stream water volume only in the GS. Our data analysis suggests that greater treatment efficiencies of phosphorus and nitrogen from the WWTPs may improve the downstream water quality.


The purpose of the study was to evaluate spatial and temporal effects of wastewater treatment plants (WWTPs) on the water quality of downstreams (Tan Stream, TS; Daemyeong Stream, DS; Gwangju Stream, GS, and Kap Stream, KS) located in four major watersheds along with impact analysis of nutrient enrichments on the WWTPs during 2004~2008. In the four streams, seasonal means of BOD, COD, TN, and TP were significantly (p⁄0.01) greater in the downstreams (Ds) than the upstreams (Us). The removal effect of nutrients (nitrogen, and phosphorus) from the WWTPs was much less than the BOD, indicating a greater nutrient impact on the downstreams. Seasonal dilution of organic matter, based on BOD, during the summer monsoon of July~ September was most pronounced in the downstreams of all four watersheds. However, mean TN in the downstreams during the monsoon varied little in all four streams. Regression analysis of TN in the downstreams against TN from the WWTPs showed that in the TS, and DS regression slopes in the upstreams were similar to the slopes of downstream but there was a significant difference in the GS (p⁄0.001) and KS (p⁄ 0.01). Tan-Stream WWTP showed low removal efficiency of BOD and COD concentrations, compared to the nutrients, whereas, two WWTPs of Gwangju and Kap Stream had low removal effects in TN and TP. Regression analysis of TN and BOD in the downstreams showed that they was closely related (p⁄0.01) with stream water volume only in the GS. Our data analysis suggests that greater treatment efficiencies of phosphorus and nitrogen from the WWTPs may improve the downstream water quality.