초록 close

서비스 인적자원 운용의 효율성 제고와 부품 또는 시설 할당의 적정성 향상을 위해 서비스센터를 통해 접수되는 서비스 요청 건수를 보다 정확하게 예측하고자 하는 필요성이 제조업을 중심으로 증가하고 있다. 본 연구에서는 제품의 특성을 반영하여 제품수명주기 별로 제품들을 군집화하고 군집 별로 적절한 예측모형을 구축한 후 예측 값을 통합하는 개별예측방식을 LCD 모니터 제조사의 사례를 통해 제시한다. 또한 예측 결과를 총량방식 및 기존에 기업이 사용하고 있는 방식과 비교․평가하여 우수성을 증명함으로써 제품이나 산업의 특성을 반영한 맞춤형 수요예측 기법 도입의 필요성을 부각하고, 그에 따른 이론적, 실무적 가이드라인을 제공한다.


One of the critical issues in the management of manufacturing companies is the efficient process of planning and operating service resources such as human, parts, and facilities, and it begins with the accurate service demand forecasting. In this research, service and sales data from the LCD monitor manufacturer is considered for an empirical study on Product Life Cycle (PLC) based service demand forecasting. The proposed PLC forecasting approach consists of four steps : understanding the basic statistics of data, clustering models using a self‐organizing map, developing respective forecasting models for each segment, comparing the accuracy performance. Empirical experiments show that the PLC approach outperformed the traditional approaches in terms of root mean square error and mean absolute percentage error.