초록 close

Double-diffusive convection inside a triangular porous cavity is studied numerically. Galerkin finite element method is adopted to derive the discrete form of the governing differential equations. The first-order backward Euler scheme is used for temporal discretization with the second-order Adams-Bashforth scheme for the convection terms in the energy and species conservation equations. The Boussinesq-Oberbeck approximation is used to calculate the density dependence on the temperature and concentration fields. A parametric study is performed with the Lewis number, the Rayleigh number, the buoyancy ratio, and the shape of the triangle. The effect of gravity orientation is considered also. Results obtained include the flow, temperature, and concentration fields. The differences induced by varying physical parameters are analyzed and discussed. It is found that the heat transfer rate is sensitive to the shape of the triangles. For the given geometries, buoyancy ratio and Rayleigh numbers are the dominating parameters controlling the heat transfer.


Double-diffusive convection inside a triangular porous cavity is studied numerically. Galerkin finite element method is adopted to derive the discrete form of the governing differential equations. The first-order backward Euler scheme is used for temporal discretization with the second-order Adams-Bashforth scheme for the convection terms in the energy and species conservation equations. The Boussinesq-Oberbeck approximation is used to calculate the density dependence on the temperature and concentration fields. A parametric study is performed with the Lewis number, the Rayleigh number, the buoyancy ratio, and the shape of the triangle. The effect of gravity orientation is considered also. Results obtained include the flow, temperature, and concentration fields. The differences induced by varying physical parameters are analyzed and discussed. It is found that the heat transfer rate is sensitive to the shape of the triangles. For the given geometries, buoyancy ratio and Rayleigh numbers are the dominating parameters controlling the heat transfer.