초록 close

기계가독형사전(Machine Readable Dictionary)에서 단어의 정의문에 나타나는 항목 단어의 상위개념을 추출하는 대부분의 연구들은 전문가에 의해 작성된 어휘패턴을 사용하였다. 이 방법은 사람이 직접 패턴을 수집하므로 시간과 비용이 많이 소모될 뿐만 아니라, 자연언어에는 같은 의미를 가진 다양한 표현들이 존재하므로 넓은 커버리지를 갖는 어휘패턴들을 수집하는 것이 매우 어렵다는 단점이 있다. 이런 문제점들을 해결하기 위하여, 본 논문에서는 구문적 특징만을 이용한 상위어 판별 규칙을 기계학습함으로써 기존에 사용되었던 어휘패턴의 지나친 어휘 의존성으로 인한 낮은 커버리지 및 패턴 수집의 문제를 해결하는 방법을 제안한다. 제안한 방법으로 기계학습된 규칙들을 상위어 자동추출과정에 적용한 결과 정확도 92.37% 성능을 보였다. 이는 기존 연구들보다 향상된 성능으로 기계학습에 의해 수집된 판별규칙이 상위어 판별에 있어서 어휘패턴의 문제를 해결할 수 있다는 것을 입증하였다.


Most approaches for extracting hypernyms of a noun from its definitions in an MRD rely on lexical patterns compiled by human experts. Not only these approaches require high cost for compiling lexical patterns but also it is very difficult for human experts to compile a set of lexical patterns with a broad-coverage because in natural languages there are various expressions which represent same concept. To alleviate these problems, this paper proposes a new method for extracting hypernyms of a noun from its definitions in an MRD. In proposed approach, we use only syntactic (part-of-speech) patterns instead of lexical patterns in identifying hypernyms to reduce the number of patterns with keeping their coverage broad. Our experiment has shown that the classification accuracy of the proposed method is 92.37% which is significantly much better than that of previous approaches.