초록 close

인터넷의 급속한 성장으로 전자편지는 정보 전달의 중요한 수단으로 사용되고 있다. 그러나 수신자가 원하지 않는 전자편지(쓰레기 편지)들이 무분별하게 배달될 수 있으며, 이로 인해 사회적으로는 물론이고 경제적으로도 큰 문제가 되고 있다. 이와 같이 쓰레기 편지를 차단하거나 여과하기 위해서 많은 연구자와 회사에서 꾸준히 연구를 진행하고 있다. 일반적으로 쓰레기 편지를 결정하는 기준은 수신자에 따라서 조금씩 차이가 있다. 또한 쓰레기 편지와 정보성 편지에 따라서 수신자가 취하는 행동이 다르다. 이 논문은 이런 사용자 행동을 쓰레기 편지 여과 시스템에 반영하여 그 시스템의 성능을 개선한다. 제안된 시스템은 크게 두 단계로 구성된다. 첫 번째 단계는 사용자 행동을 추론하는 단계이고 두 번째 단계는 추론된 사용자 행동을 이용해서 쓰레기 편지를 여과하는 단계이다. 두 단계 모두에서 점진적인 기계학습 방법(TiMBL - IB2)을 이용한다. 제안된 시스템을 평가하기 위해 12명의 사용자로부터 12,000통으로 이루어진 전자편지 말뭉치를 구축하였다. 실험 결과는 사용자에 따라 81% ~ 93%의 분류 정확도를 보였다. 사용자의 행동 정보를 포함하는 편지 분류 결과는 그렇지 않은 결과에 비해 평균 14%의 분류 정확도가 향상되었다.


With rapidly developing Internet applications, an e-mail has been considered as one of the most popular methods for exchanging information. The e-mail, however, has a serious problem that users can receive a lot of unwanted e-mails, what we called, spam mails, which cause big problems economically as well as socially. In order to block and filter out the spam mails, many researchers and companies have performed many sorts of research on spam filtering. In general, users of e-mails have different criteria on deciding if an e-mail is spam or not. Furthermore, in e-mail client systems, users do different actions according to a spam mail or not. In this paper, we propose a mail filtering system using such user actions. The proposed system consists of two steps: One is an action inference step to draw user actions from an e-mail and the other is a mail classification step to decide if the e-mail is spam or not. All the two steps use incremental learning, of which an algorithm is IB2 of TiMBL. To evaluate the proposed system, we collect 12,000 mails of 12 persons. The accuracy is 81 ~ 93% according to each person. The proposed system outperforms, at about 14% on the average, a system that does not use any information about user actions.