초록 close

에지검출은 영상처리와 컴퓨터비젼의 매우 중요한 연구분야이다. 그리고 일반적인 에지검출 연산자인 Robert, Sobel, Kirsh 등의 연산자는 계단에지를 검출하는데는 적합하나 잡음에 매우 민감한 단점을 가지고 있다. 따라서 본 논문에서는 영상정보척도와 신경회로망을 이용한 잡음에 매우 강한 계단에지 검출방법을 제안한다. 계단에지의 명암도 분포의 차, 방향성, 연속성, 구조성 등의 계단에지의 기본적인 정보특성을 이용한 함수를 BP 신경회로망의 입력벡터로 구성한 결과 매우 위치가 정확한 계단에지를 얻을 수 있었다. 또한 실험영상으로 장미영상과 세포영상을 사용하여 매우 만족스런 실험결과를 얻을 수 있었다.


An edge detection is an very important area in image processing and computer vision, General edge detection methods (Robert mask, Sobel mask, Kirsh mask etc) are a good performance to detect step edge in a image but are no good performance to detect step edge in a noses image. We suggested a step edge detection method based on image information measure and neutral network. Using these essential properties of step edges, which are directional and structural and whose gray level distribution in neighborhood, as a input vector to the BP neutral network, we get the good result of proposed algorithm. And also we get the satisfactory experimental result using rose image and cell images an experimental and analysing image.