초록 close

본 논문은 비 교정된 두 장의 영상간에 움직임 정보를 이용하여 먼저 초기 대응되는 후보점들 가운데 잘못된 후보점들을 미리 대부분 찾아내서 제거한 후에 에피폴라 평면의 기하학 정보를 이용하여 최소화된 오차를 갖는 기본 행렬을 찾아내는 보다 강건한 알고리즘을 제안한다. 제안된 알고리즘은 초기에 대응되는 후보점을 찾을 때 고전적인 기법인 상관성 대응을 기반으로 대응점을 추출하고 잘못된 대응 후보점들을 정확히 제거함으로써 제안된 알고리즘을 강건하게 하였다. 잘못된 대응 후보점들을 정확히 제거하기 위해 본 논문에서는 두 영상간의 특징점에 대한 이동 벡터의 정보를 이용한다. 다양한 영상을 실험함으로써 제안된 알고리즘이 강건하다는 것을 검증하였고, 그에 따른 실험 결과는 기존 기법의 매칭 알고리즘보다 향상되었음을 보여준다.


This paper proposes a robust method to find corresponding points for un-calibrated stereo images by using a classical method based on the epipolar constraints and motion flows. If we detect matching for the only epipolar geometry, the problem is very high. Therefore, in order to find an initial set of matches, we use the correlation technique and then exploit motion vectors to remove mismatches among matching candidates. Then, the epipolar geometry can be accurately estimated using a well adapted criterion and computed the fundamental matrix. The proposed algorithm has been widely tested and works remarkably well in various scenes, evenly, with many repetitive patterns. The results show that the proposed algorithm is better than the conventional.