초록 close

최근 시뮬레이션 최적화를 통한 입·출력 변수의 분석에 관한 많은 연구가 진행되고 있다. 이와 같은 연구에서 메타모델을 활용한 기법이 많이 제시 되고 있는데, 대부분은 중요(종속) 변수를 목적함수로, 설계(독립) 변수를 제약 조건으로 다목적 최적 함수를 구성하여 실험을 진행하고 최적해를 찾는다. 본 논문에서는 직접적인 설계 변수의 선택을 하기 위하여 설계 변수를 벡터의 형태로 전환하여 목적함수로 구성하고, 설계 변수의 정의역과 회귀 메타모델을 이용하여 제약 조건을 구성하여 다목적 최적 함수를 구성하여 파레토 최적해 집합을 산출 하는 방법을 제시 하였다. 이와 같은 분석을 사용하여 최적해의 개념이 아닌 최적해 집합을 제시함으로서 설계자가 자신의 시스템에 가장 적당한 설계 변수의 선택이 가능해 지며, 메타모델의 에러 변수()를 줄이기 위한 대안의 선택도 가능 할 것이다. 이와 같은 분석 기법은 관련 분야 뿐 아니라 일반적인 시스템 설계 변수의 적용에도 충분히 이용이 가능 할 것이다.


In this article, we propose a different modeling approach, which aims at the simulation optimization so as to meet the design specification. Generally, Multi objective optimization problem is formulated by dependent factors as objective functions and independent factors as constraints. However, this paper presents the critical(dependent) factors as objective function and design(independent) factors as constraints for the selection of design factors directly. The objective function is normalized for the generalization of design factors while the constraints are composed of the simulation-based regression metamodels for the critical factors and design factor's domain. Then the effective and fast solution procedure based on the pareto optimal solution set is proposed. This paper provides a comprehensive framework for the system design using the simulation and metamodels. Therefore, the method developed for this research can be adopted for other enhancements in different but comparable situations.