초록 close

안전한 네트워크의 운영을 함에 있어 네트워크 침입 탐지에서 오탐지율을 줄이고 정탐지율을 높이는 것은 매우 중요한 일이라 할 수 있다. 최근에 얼굴 인식과 생물학 정보칩 분류 등에서 활발히 적용 연구되는 SVM을 침입탐지에 이용하면 실시간 탐지가 가능하므로 탐지율의 향상을 기대할 수 있다. 그러나 기존의 연구에서는 입력값들을 벡터공간에 나타낸 후 계산된 값을 근거로 분류하므로, 이산형의 데이터는 입력 정보로 사용할 수 없다는 단점을 가지고 있다. 따라서 이 논문에서는 의사결정트리를 SVM에 결합시킨 침입 탐지 모델을 제안하고 이에 대한 성능을 평가한 결과 기존 방식에 비해 침입 탐지율, F-P오류율, F-N오류율에 있어 각각 5.6%, 0.16%, 0.82% 향상이 있음을 보였다.


In order to operate a secure network, it is very important for the network to raise positive detection as well as lower negative detection for reducing the damage from network intrusion. By using SVM on the intrusion detection field, we expect to improve real-time detection of intrusion data. However, due to classification based on calculating values after having expressed input data in vector space by SVM, continuous data type can not be used as any input data. Therefore, we present the hybrid model between SVM and decision tree method to make up for the weak point. Accordingly, we see that intrusion detection rate, F-P error rate, F-N error rate are improved as 5.6%, 0.16%, 0.82%, respectively.