초록 close

본 논문에서는 카메라로부터 획득 되어진 비디오 시퀀스로부터 다중 움직임 객체와 배경을 분할하고 시공간 정보에 기반 한 객체 추적 방법을 제안한다. 제안한 방법은 3단계로 구성되어 있다. 먼저 입력 비디오 시퀀스로부터 프레임 사이의 차를 이용한 움직임 영역과 움직임이 존재하지 않는 영역을 구분하여 적응적 경계값을 추출한다. 두 번째는 참조 배경영상과 적응적 경계값을 이용하여 움직임이 존재하는 영역으로부터 개략적 객체 분할을 수행하며, 분할된 이진영상에 형태학적 영역 병합 알고리즘을 적용하여 객체 병합을 수행하였다. 마지막으로 분할된 객체에 시공간 정보를 이용하여 객체에 임의의 ID를 할당하여 추적하였다. 카메라로부터 획득되어진 비디오 시퀀스를 이용한 실험에서 객체들의 분할 및 추적의 효율성과 시스템의 유용성을 확인하였다.


In this paper, we propose an efficient method for detecting and tracking multiple moving objects based on morphological region merging from real-time video sequences. The proposed approach consists of adaptive threshold extraction, morphological region merging and detecting and tracking of objects. Firstly, input frame is separated into moving regions and static regions using the difference of images between two consecutive frames. Secondly, objects are segmented with a reference background image and adaptive threshold values, then, the segmentation result is refined by morphological region merge algorithm. Lastly, each object segmented in a previous step is assigned a consistent identification over time, based on its spatio-temporal information. The experimental results show that a proposed method is efficient and useful in terms of real-time multiple objects detecting and tracking.