초록 close

본 연구에서는 위상최적화 알고리즘의 수렴성을 개선하기 위해 설계영역에 초기 구멍을 도입하는 방법을 제시하는데, 이것은 경계면에 기초한 최적화 방법의 느린 수렴성을 완화하기 위해, Eschenauer et al.에 의해 고안된 버블 방법의 설계영역 안에 구멍을 도입하는 개념과 연계된다. 버블 방법과 달리, 제안된 방법에서는 최적화 과정동안 구멍의 위치를 정의하는 특성함수를 이용하지 않고, 최적화 초기화 단계에서만 초기 구멍을 도입하는데, 이러한 초기 설계영역 안의 솔리드와 보이드 영역들은 고정되는 것이 아니라 합쳐지거나 쪼개지면서 변화된다. 따라서 위상최적화 알고리즘에서 구멍의 이동에 관련된 복잡한 수치적인 계산 없이 자동적으로 설계변수의 유한변화를 더욱 강화시키기 때문에 목적함수 값의 수렴성을 개선할 수 있다. 본 논문에서는 다양한 치수와 형상의 구멍을 포함하는 초기 설계영역을 가지는 Michell형 보의 위상 최적설계를 밀도분포법으로 불리는 SIMP를 이용하여 수행하였다. 이를 통해 위상최적화의 수렴성을 개선하고 최적위상과 형상에 영향을 미치는 초기 구멍의 효과를 검증하였다.


This study shows an implementation of partial holes in an initial design domain in order to improve convergences of topology optimization algorithms. The method is associated with a bubble method as introduced by Eschenauer et al. to overcome slow convergence of boundary-based shape optimization methods. However, contrary to the bubble method, initial holes are only implemented for initializations of optimization algorithm in this approach, and there is no need to consider a characteristic function which defines hole's deposition during every optimization procedure. In addition, solid and void regions within the initial design domain are not fixed but merged or split during optimization procedures. Since this phenomenon activates finite changes of design parameters without numerically calculating movements and positions of holes, convergences of topology optimization algorithm can be improved. In the present study, material topology optimization designs of Michell-type beam utilizing the initial design domain with initial holes of varied sizes and shapes is carried out by using SIMP like a density distribution method. Numerical examples demonstrate the efficiency and simplicity of the present method.