초록 close

본 논문에서는 Zernike 모멘트를 이용한 새로운 얼굴 검출 기법을 제안한다. 입력 영상을 가변 크기의 영역으로 탐색하면서 Zernike 모멘트를 계산하여 신경망에 의해 얼굴과 비얼굴 영역으로 분류하여 얼굴을 검출한다. 직교 모멘트의 재구성 능력으로 인해, 분류기의 입력 특징은 화소의 수에 비해 감소될 수 있다. 또한, Zernike 모멘트의 크기는 회전에 불변한 특징을 가지므로, 회전된 얼굴 영역을 검출할 수 있다. Yale 데이터베이스의 영상에 대해 적용한 결과, 회전되지 않은 영상에서는 밝기값 정보를 사용하는 기법보다 약간 낮은 성능을 보였지만, 회전된 영상에 대해서는 월등히 높은 성능을 보였다. 국부 조명에 대한 추가적인 보상과 특징이 사용된다면, 강건한 얼굴 인식을 위한 전처리 과정의 핵심 기술로 사용할 수 있을 것이다.


This paper proposes a novel method for face detection method using Zernike moments. To detect the faces in an image, local regions in multiscale sliding windows are classified into face and non-face by a neural network, and input features of the neural network consist of Zernike moments. Feature dimension is reduced as the reconstruction capability of orthogonal moment. In addition, because the magnitude of Zernike moment is invariant to rotation, a tilted human face can be detected. Even so the detection rate of the proposed method about head on face is less than experiments using intensity features, the result of our method about rotated faces is more robust. If the additional compensation and features are utilized, the proposed scheme may be best suited for the later stage of classification.