초록 close

We report on experimental studies of an Al$_{0.15}$Ga$_{0.85}$N/GaN high-electron-mobility transistor structure grown on a $p$-type Si (111) substrate. This structure is compatible with complementary metal-oxide-semiconductor (CMOS) technology and, thus, has great potential device applications. The low-temperature magnetoresistivity shows a parabolic dependence on the applied perpendicular magnetic field. This effect is ascribed to electron-electron interaction (EEI) effects in a weakly-disordered two-dimensional system. Our experimental results agree with the EEI theory when the correction term in the ballistic region has been subtracted.


We report on experimental studies of an Al$_{0.15}$Ga$_{0.85}$N/GaN high-electron-mobility transistor structure grown on a $p$-type Si (111) substrate. This structure is compatible with complementary metal-oxide-semiconductor (CMOS) technology and, thus, has great potential device applications. The low-temperature magnetoresistivity shows a parabolic dependence on the applied perpendicular magnetic field. This effect is ascribed to electron-electron interaction (EEI) effects in a weakly-disordered two-dimensional system. Our experimental results agree with the EEI theory when the correction term in the ballistic region has been subtracted.