초록 close

유한체 상의 곱셈기는, 오류제어부호, 암호 시스템, 디지털 신호처리 등과 같은 여러 분야에서 기본적인 구성 요소로 사용되고 있다. 그러므로 효율적인 구조를 갖는 유한체 상의 곱셈기를 설계하면 전체적인 시스템의 성능을 대폭 향상시킬 수 있다. 본 논문에서는 기존의 직렬 유한체 곱셈기에 비해 짧은 지연시간을 갖는 새로운 직렬 곱셈기 구조를 제안하였다. 제안한 곱셈기는 유한체의 곱을 표현하는 다항식을 여러 개로 분리한 다음, 이 다항식들을 동시에 처리하는 방식을 사용하여 직렬 곱셈기의 속도를 향상시켰다. 이 곱셈기는 유한체 GF(2m)의 표준기저 상에서 동작하며, 기존의 직렬 곱셈기보다는 짧은 지연시간에 결과를 얻을 수 있고, 병렬 곱셈기보다는 적은 하드웨어로 구현할 수 있다. 제안한 곱셈기는 회로의 복잡도와 지연시간 사이에 적절한 절충을 꾀할 수 있는 장점을 가지고 있다.


Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Hence, the design of efficient dedicated finite field multiplier architectures can lead to dramatic improvement on the overall system performance. In this paper, a new bit serial structure for a multiplier with low latency in Galois field is presented. To speed up multiplication processing, we divide the product polynomial into several parts and then process them in parallel. The proposed multiplier operates standard basis of GF(2m) and is faster than bit serial ones but with lower area complexity than bit parallel ones. The most significant feature of the proposed architecture is that a trade-off between hardware complexity and delay time can be achieved.