초록 close

We propose a novel carbon-nanotube (CNT)-based nonvolatile memory, which can serve as a key building block for molecular-scale computers and perform molecular dynamics simulations to investigate the dynamic operation of a double-walled CNT memory. We find that the most important physical characteristics of the proposed nanometer-scale memory device are the bi-stability achieved by using the CNT inter-wall van der Waals interaction , the CNT-metal binding energies and the reversibility caused by the electrostatic attractive forces. Since the CNT shuttle can have a high kinetic energy during the transition, the dynamical collisions between the CNT and the metal electrodes are very important factors to be considered for design of a electrostatically telescoping CNT memory. The long collision time and the several rebounds cause a delay in the state transition.


We propose a novel carbon-nanotube (CNT)-based nonvolatile memory, which can serve as a key building block for molecular-scale computers and perform molecular dynamics simulations to investigate the dynamic operation of a double-walled CNT memory. We find that the most important physical characteristics of the proposed nanometer-scale memory device are the bi-stability achieved by using the CNT inter-wall van der Waals interaction , the CNT-metal binding energies and the reversibility caused by the electrostatic attractive forces. Since the CNT shuttle can have a high kinetic energy during the transition, the dynamical collisions between the CNT and the metal electrodes are very important factors to be considered for design of a electrostatically telescoping CNT memory. The long collision time and the several rebounds cause a delay in the state transition.