초록 close

특정한 방향에 대해 방향중성자속(angular neutron flux)을 정의하는 방향차분 방정식(discrete-ordinates or SN equation)과 달리 방향변수를 구분된 방향영역에 대하여 적분한 값을 사용하고, 해당 방향영역 내에서 방향중성자속이 일정하다고 가정하는 영역상수법(piecewise-constant method)을 개발하였다. 기존 방향차분법과 본 연구에서 개발된 영역상수법을 1계 수송방정식(1?st-order Boltzmann transport equation)과 2계 우성 방정식(even-parity equation)에 적용하여 방향차분 방정식인 SN 방정식과 유사 방향차분방정식(SN-like equation)인 PCN 방정식을 유도하였다. 우성 방정식에 영역상수법을 적용한 경우 기존 방향차분법의 단점인 광첨두 현상(ray effect)이 현저히 감소함을 확인하였는데 이는 우성 방정식의 혼합 미분항의 기여도가 작아지기 때문인 것으로 판단된다. 이러한 이론은 우성 방정식에서 혼합 미분항이 제거된 단순우성 방정식(simplified even-parity equation)을 사용하는 경우 광첨두 현상이 완전 제거 또는 극단적으로 감소되었던 이전의 결과를 이론적으로 설명한다.


- The piecewise constant angular approximation is developed to replace the conventional angular quadrature sets in the solution of the second-order, multi-dimensional SN neutron transport equations. The newly generated quadrature sets by this method substantially mitigate ray effects and can be used in the same manner as the conventional quadrature sets are used. The discrete-ordinates and the piecewise-constant approximations are applied to both the first-order Boltzmann and the second-order form of neutron transport equations in treating angular variables. The result is that the mitigation of ray effects is only achieved by the piecewise-constant method, in which new angular quadratures are generated by integrating angle variables over the specified region. In other sense, the newly generated angular quadratures turn out to decrease the contribution of mixed-derivative terms in the even-parity equation that is one of the second-order neutron transport equation. This result can be interpreted as the entire elimination or substantial mitigation of ray effect are possible in the simplified even-parity equation which has no mixed-derivative terms.