초록 close

본 연구는 염화네오디뮴 수용액으로부터 탄산수소암모늄의 첨가에 의한 탄산네오디뮴 합성 시, 반응에 따라 형성되는 탄산네오디뮴 결정에 대하여 고찰하였다. 결정형의 탄산네오디뮴을 얻기 위해서는 염화네오디뮴 수용액에 투입되는 탄산수소암모늄 수용액의 농도와 반응온도가 중요한 역할을 한다. 무정형의 탄산네오디뮴은 핵생성을 통한 일차입자들의 응집에 의하여 형성되며, 반응물의 농도 및 반응온도 등을 증가시켜 반응속도를 빠르게 함으로서 결정형의 탄산네오디뮴을 얻을 수 있었다. 또한 반응조건에 따라 lanthanite[Nd2(CO3)3?8H2O]와 tengerite[Nd2(CO3)3?2.5H2O] 결정구조를 갖는 탄산네오디뮴을 합성할 수 있었으며, lanthanite 구조의 탄산네오디뮴은 온도에 민감하고 불규칙한 모양의 덩어리 형태를 가지며, 반면에 tengerite 구조의 탄산네오디뮴은 침상의 형태를 가지고 있음을 알 수 있다. 열분해 거동 고찰 결과 250까지 탄산네오디뮴의 결정수가 분해되고 420oC 부근에서 CO2가 분해되어 Nd2O2CO3가 형성되며, 620oC에서 산화네오디뮴 결정화가 시작하여 700oC 부근에서 최종적으로 산화네오디뮴의 형성되는 것을 알 수 있다. 또한 소성된 산화네오디뮴의 형상은 탄산네오디뮴의 형상에 의하여 영향 받고 있음을 알 수 있다.


In this study, the crystallization of neodymium carbonate from neodymium chloride solution by addition of ammonium bicarbonate was investigated. The concentration of reactants such as neodymium chloride and ammonium bicarbonate, and reaction temperature play an important part in order to obtain the crystal of neodymium carbonate. It seemed that amorphous neodymium carbonate was prepared by aggregation of primary particles formed through nucleation. If reaction rate was increased by increasing the concentration of reactants and reaction temperature, then neodymium carbonate crystal could be obtained. Lanthanite-type neodymium carbonate[Nd2(CO3)38H2O] and tengerite-type neodymium carbonate[Nd2(CO3)32.5H2O] could be obtained with reaction conditions. Lanthanite-type neodymium carbonate was sensitive to temperature. The thermal decomposition of neodymium carbonate contained the processes of dehydration, decarbonation and crtstalization of Nd2O3. The shape of lanthanite-type neodymium carbonate was irregular lump type, and tengerite-type neodymium carbonate had the shape of needle type. The shape of Nd2O3 was affected by the shape of neodymium carbonate.