초록 close

문장이 길어질수록 구문분석의 정확률이 급격히 떨어지므로, 문장을 분할하여 각각의 분할단위로 구문분석을 수행한 후 각 구문분석결과를 합쳐 완성된 구문트리를 만드는 것이 일반적이다. 이 때 주로 절 단위로 문장이 분할되고, 각 절의 구문분석결과를 통합하게 되는데, 통합 과정에서 절-절 간의 의존관계 설정에 많은 오류가 생긴다. 이러한 절 간의 의존관계의 애매성을 해결하기 위하여, 본 논문은 기계학습을 이용하여 절-절 간의 의존관계를 설정하고자 한다. 따라서 이에 필요한 자질들이 무엇인지 알아보고, 성능향상에 기여를 하는 자질과, 오히려 성능을 저하시키는 자질들을 분석해 본다. Support Vector Machines(SVM)을 사용하여 성능을 평가하고, 본 논문에서 실험한 방법과 기존의 방법들의 성능을 비교해 본 결과, 절-절 간의 의존관계 설정에 있어서 8.88~15.35%의 성능향상을 보였다.


The longer the input sentences, the worse the syntactic parsing results. Therefore, a long sentence is first divided into several clauses, and syntactic analysis for each clause is performed. Finally, all the analysis results are merged into one. In the merging process, it is difficult to determine the dependency among clauses. To handle such syntactic ambiguity among clauses, this paper proposes an SVM-based clause-dependency determination method. We extract various features from clauses, and analyze the effect of each feature on the performance. We also compare the performance of our proposed method with those of previous methods.