초록 close

특징선택은 문제 영역에서 관찰된 다차원데이터로부터 데이터가 묘사하는 구조를 잘 반영하는 속성을 선택하여 효과적인 실험 데이터를 구성하는 데이터 준비과정이다. 이 과정은 문서분류, 영상인식, 유전자 선택 분야에서와 같은 분류시스템의 성능향상에 중요한 구성요소로서 상관관계 기법, 차원축소 및 상호 정보 처리 등의 통계학이나 정보이론의 접근방법을 중심으로 연구되어왔다. 이와 같은 특징 선택 분야의 연구는 다루는 데이터의 양이 방대해지고 복잡해지면서 더욱 중요시 되고 있다.본 논문에서는 데이터가 가지는 특성을 반영하면서 새로운 데이터에 대하여 일반화 할 수 있는 특징선택 방법을 제안하고자한다. 준비된 데이터의 각 속성 데이터에 대하여 퍼지 클러스터 분석에 의하여 최적의 클러스터 정보를 얻고 이를 바탕으로 군집성과 분리성의 정도를 측정하여 그 값에 따라 특징을 선택하는 메카니즘을 제공한다. 제안된 방법을 실세계의 컴퓨터 바이러스 분류에 적용하여 기존의 대비에 의한 휴리스틱 방법에 의해 선택된 데이터를 가지고 분류한 것과 비교하고자 한다. 이를 통하여 주어진 특징에 서열을 부여할 수 있고 효과적으로 특징을 선택하여 시스템의 성능을 향상 시킬 수 있음을 확인한다.


Feature selection is a preprocessing technique commonly used on high dimensional data. Feature selection studies how to select a subset or list of attributes that are used to construct models describing data. Feature selection methods attempt to explore data's intrinsic properties by employing statistics or information theory. The recent developments have involved approaches like correlation method, dimensionality reduction and mutual information technique. This feature selection have become the focus of much research in areas of applications with massive and complex data sets.In this paper, we provide a feature selection method considering data characteristics and generalization capability. It provides a computational approach for feature selection based on fuzzy cluster analysis of its attribute values and its performance measures. And we apply it to the system for classifying computer virus and compared with heuristic method using the contrast concept. Experimental result shows the proposed approach can give a feature ranking, select the effective features, and improve the system performance.