초록 close

본 논문에서는 복잡한 배경을 가지는 전방 관측 열상(FLIR; forward looking infrared) 영상에서의 소형 표적 탐지 기법을 제안하였다. 제안한 기법에서는 먼저 이전 프레임과 현재 프레임의 차를 구하여 표적의 움직임 정보를 획득할 뿐만 아니라 시간적으로 발생하는 배경 잡음을 제거한다. 이때 먼 거리에서 다가오는 표적이나 속도가 느린 표적의 경우 차 영상 내에서의 표적의 움직임 정보는 매우 작은 명암도 값을 가진다. 이런 작은 명암도 값을 두드러지게 하여 표적 탐지를 용이하게 하기위하여 프레임 차 영상에 국부 감마 교정을 행한다. 이렇게 표적이 개선된 영상에서 국부적인 통계적인 특성을 이용하여 탐지 지표를 계산한 후 가장 낮은 탐지 지표값을 탐지하고자하는 표적으로 선정한다. 실험을 통하여 제안한 기법이 표적의 탐지 성능이 기존의 탐지기법보다 우수하였음을 확인하였다.


In this paper, we propose a small target detection algorithm for FLIR image with complex background. First, we compute the motion information of target from the difference between the current frame and the created background image. However, the slow speed of target cause that it has the very low gray level value in the difference image. To improve the gray level value, we perform the local gamma correction for difference image. So, the detection index is computed by using statistical characteristics in the improved image and then we chose the lowest detection index a true target. Experimental results show that the proposed method has significantly the good detection performance.