초록 close

본 연구는 분자동력학 시뮬레이션을 이용하여 탄소 나노튜브를 이용한 전계효과 이온-전송 소자를 분석하였다. 외부 전기장에 의해 단전자 전계효과 트랜지스터 및 나노크기의 데이터 저장 장치로 활용될 수 있는 원리를 규명하였다. 외부 전기장이 증가할수록 칼륨 원자는 채널을 빠르게 통과하였다. 낮은 외부 전계에서는 나노채널의 열적 파동이 칼륨 원자의 터널링에 영향을 주게 됨을 해석하였다. 이로서 외부 전계의 강도에 따라 칼륨원자의 채널을 터널링하는 효과를 제어할 수 있는 메커니즘을 도출하였다.


We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.