초록 close

유비쿼터스 컴퓨팅에서 대부분의 시스템들이 개인화된 추천을 위하여 사용자와 성향이 비슷한 사람들의 컨텍스트 정보를 분석하는데 인구통계학적 방법이나 협력적 필터링을 주로 사용한다. 서비스 추천 시스템들은 컨텍스트 정보 중에서 성별, 나이, 직업, 구매이력 등의 정적 컨텍스트를 주로 사용하고 있다. 그러나 이러한 시스템은 이동경로 같은 사용자의 상황을 고려하기가 어렵기 때문에 개인의 성향을 정확하게 분석하여 실시간으로 개인화된 추천 서비스를 제공하는데 한계가 있다. 본 논문에서는 사용자의 상황을 고려하기 위해 동적 컨텍스트 중에서 사용자의 이동경로를 이용한다. 이동경로의 예측 정확도를 높이기 위해 RSOM의 입력으로 들어가는 이동경로를 경로보정 알고리즘을 사용하여 보정한다. 그리고 보정된 경로를 RSOM으로 학습시켜 사용자의 이동패턴을 분석하고 향후 이동경로를 예측한 후, 사용자의 선호도가 높은 상품들 중에서 예측 경로 상에 있는 가장 가까운 상품을 실시간으로 추천한다. 제안한 방법의 예측 정확도를 측정한 결과 MAE가 평균 0.5 이하로 측정됨으로써 사용자의 이동경로를 올바르게 예측할 수 있음을 확인하였다.


Most systems in ubiquitous computing analyze context information of users which have similar propensity with demographics methods and collaborative filtering to provide personalized recommendation services. The systems have mostly used static context information such as sex, age, job, and purchase history. However the systems have limitation to analyze users' propensity accurately and to provide personalized recommendation services in real-time, because they have difficulty in considering users situation as moving path.In this paper we use users' moving path of dynamic context to consider users situation. For the prediction accuracy we complete with a path completion algorithm to moving path which is inputted to RSOM . We train the moving path to be completed by RSOM, analyze users' moving pattern and predict a future moving path. Then we recommend the nearest product on the prediction path with users' high preference in real-time. As the experimental result, MAE is lower than 0.5 averagely and we confirmed our method can predict users moving path correctly.