초록 close

본 논문은 통계 기반 접근 방식인 HMM(Hidden Markov model)과 생물학의 개체명에 관한 온톨로지 정보를 이용한 생물학 문서에서의 개체명(named entity) 경계 인식 방법을 제안한다. 제안하는 방법은 31개의 자질 정보를 이용한 평탄화 기법을 사용하며 생물학 개체명의 계층 정보를 이용하여 HMM의 자료 부족 문제를 완화시킬 수 있도록 하였다. 개체명 경계 인식의 학습과 실험을 위하여 GENIA 코퍼스 ver 2.1을 사용하였으며 개체명 경계 인식 실험을 수행한 결과 모든 부류를 사용한 경우보다 정확도 및 실행 속도가 개선됨을 확인하였다.


This paper proposes a method for boundary recognition of named entity using hidden markov model and ontology information of biological named entity. We uses smoothing method using 31 feature information of word and hierarchical information to alleviate sparse data problem in HMM. The GENIA corpus version 2.1 was used to train and to experiment the proposed boundary recognition system. The experimental results show that the proposed system outperform the previous system which did not use ontology information of hierarchical information and smoothing technique. Also the system shows improvement of execution time of boundary recognition.