초록 close

의학용 시소러스인 MeSH (Medical Subject Heading)는 영어 의학 논문 색인을 위한 통제어 시소러스로서 오랫동안 사용되고 있다. 본 논문에서는 한국어 MeSH를 이용하여 한국어 의학 논문의 요약문에 자동으로 영문 MeSH 색인어를 부여하는 ‘교차언어 키워드 부여’ 방법을 제안하고 색인 전문가 및 저자의 색인 효율과 비교한다. 이 색인어 부여 과정은 우선 한국어 MeSH 용어를 문장에서 인식하여 추출하고, 이 용어를 다시 영어 MeSH 용어로 바꾼 후, 용어의 중요도를 계산하여 상위의 용어를 색인어로 부여한다. 특히, 한국어 MeSH 용어 추출을 위해 효과적으로 띄어쓰기 변이를 처리할 수 있는 방법을 제안한다. 실험 결과, 띄어쓰기 변이를 효과적으로 처리하여 한국어 MeSH의 크기를 약 42%정도 줄였을 뿐만 아니라, 후보 색인어 추출의 효과도 높였다. 또 이 방법을 이용하여 색인어 자동 부여를 한 후, 색인 전문가 및 저자의 색인 결과를 비교한 결과, 이 자동 색인 방법이 전문가의 색인 능력보다는 부족했지만, 저자의 색인 능력과는 별 차이가 없음을 보였다.


The medical thesaurus, MeSH (Medical Subject Heading), has been used as a controlled vocabulary thesaurus for English medical paper indexing for a long time. In this paper, we propose an automatic cross language keyword assignment method, which assigns English MeSH index terms to the abstract of a Korean medical paper. We compare the performance with the indexing performance of human indexers and the authors. The procedure of index term assignment is that first extracting Korean MeSH terms from text, changing these terms into the corresponding English MeSH terms, and calculating the importance of the terms to find the highest rank terms as the keywords. For the process, an effective method to solve spacing variants problem is proposed. Experiment showed that the method solved the spacing variant problem and reduced the thesaurus space by about 42%. And the experiment also showed that the performance of automatic keyword assignment is much less than that of human indexers but is as good as that of authors.