초록 close

- In this paper, we propose an accurate and stable solution of the transient electromagnetic response from three-dimensional arbitrarily shaped conducting objects by using a time domain magnetic field integral equation. This method does not utilize the conventional marching-on in time (MOT) solution. Instead we solve the time domain integral equation by expressing the transient behavior of the induced current in terms of temporal expansion functions with decaying exponential functions and Laguerre polynomials. Since these temporal expansion functions converge to zero as time progresses, the transient response of the induced current does not have a late time oscillation and converges to zero unconditionally. To show the validity of the proposed method, we solve a time domain magnetic field integral equation for three closed conducting objects and compare the results of Mie solution and the inverse discrete Fourier transform (IDFT) of the solution obtained in the frequency domain.