초록 close

- In this paper, genetic algorithm based adaptive image enhancement filtering scheme is proposed and implemented on FPGA board. Conventional filtering methods require a priori noise information for image enhancement . In general, if a priori information of noise is not available, heuristic intuition or time consuming recursive calculations are required for image enhancement. Contrary to the conventional filtering methods, the proposed filter system can find optimal combination of filters as well as their sequent order and parameter values adaptively to unknown noise types using structured genetic algorithms. The proposed image enhancement filter system is mainly composed of two blocks. The first block consists of genetic algorithm part and fitness evaluation part. And the second block consists of four types of filters. The first block (genetic algorithms and fitness evaluation blocks) is implemented on host computer using C code, and the second block is implemented on re-configurable FPGA board. For gray scale control, smoothing, and deblurring, four types of filters(median filter, histogram equalization filter, local enhancement filter, and 2D FIR filter) are implemented on FPGA. For evaluation, three types of noises are used and experimental results show that the proposed scheme can generate optimal set of filters adaptively without a priori noise information.