초록 close

This paper introduces the modeling and analysis of a discrete-time, two-phase queueing system for both exhaustive batch service and gated batch service. Packets arrive at the system according to a Bernoulli process and receive batch service in the first phase and individual services in the second phase. We derive the probability generating function (PGF) of the system size and show that it is decomposed into two PGFs, one of which is the PGF of the system size in the standard discrete-time Geo/G/1 queue without vacations. We also present the PGF of the sojourn time. Based on these PGFs, we present useful performance measures, such as the mean number of packets in the system and the mean sojourn time of a packet.


This paper introduces the modeling and analysis of a discrete-time, two-phase queueing system for both exhaustive batch service and gated batch service. Packets arrive at the system according to a Bernoulli process and receive batch service in the first phase and individual services in the second phase. We derive the probability generating function (PGF) of the system size and show that it is decomposed into two PGFs, one of which is the PGF of the system size in the standard discrete-time Geo/G/1 queue without vacations. We also present the PGF of the sojourn time. Based on these PGFs, we present useful performance measures, such as the mean number of packets in the system and the mean sojourn time of a packet.